

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

COMBINED SCIENCE 0653/23

Paper 2 Core Theory

October/November 2016

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

[Turn over

© UCLES 2016

				-					
1	(a)	(i)	newton;			[1]			
	()	(ii)		moves through a dist	ance ; <i>owtte</i>	[1]			
	(b)	(i)	chemical; potential/stored	(elastic) ;					
			kinetic;			[3]			
		(ii)	sound/thermal e	•	ow as e.g. vibration/is lost as	[1]			
	(2)	/:\	100 km /h = 100	. 1000 /2600 - 50 m	/a ·	[4]			
	(c)			× 1000/3600 = 50 m		[1]			
		(ii)	time = distance/s = 2(s)	speed ; (or equivalen	t) OR 100750	[2]			
2	(a)								
_	(a)		particle	number					
			proton	12					
			neutron	12					
		;;							
			r 3 correct boxes (orrect boxes (2)	1)		[2]			
	(b)	-	gen LHS ; gnesium LHS <i>and</i>	magnesium oxide R	HS;	[2]			
						F.4.1			
	(C)	A a	<i>nd</i> hydrogen/H₂			[1]			
	(d)	(i)			an motal :	[2]			
		/::\		l and chlorine is a no	m-metar,	[2]			
		(11)		ygen are non-metals	;				
			or hydrogen;	n matal.		[0]			
			hydrogen is a no	n-metai ;		[2]			

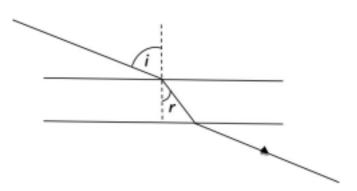
Mark Scheme
Cambridge IGCSE – October/November 2016

Syllabus 0653 Paper 23

Page 2

			Cambridg	e IGCSE – Oct	ober/Nover	mber 2016	5	0653	23
3	(a)	(i)	E vena cava/B pu	ılmonary vein ;					[1]
		(ii)	valve ; prevents backflow	of blood;					[2]
		(iii)	oxygen content in carbon dioxide co		;				[2]
	(b)	(i)	glucose + oxygen	→ carbon dioxid	de + water ;	•			[1]
		(ii)	any two from: protein synthesis; cell division; growth; passage of nerve maintenance of a	impulses ;	amperatura				[2]
			maintenance of a	constant body to	emperature	,			[2]
	(c)	act	y suitable activity, e ivity is more energe ergetic/active/uses	tic/active/uses	more oxyge		ting but	less	[1]
4	(a)) infra-red;							
			gamma radiation	ultra-violet	in	nfra-red		radio waves	
		in (correct box ;						[2]
	(b)		liation ; nvection ;						[2]
	(c)	an	y reasonable descri	ption of good ins	sulation arou	ound tank ;			[1]
	(d)	an	y reasonable descri	ption of thermal	expansion;	;			[1]
	(e)	an	y reasonable proble	m caused by wa	ater freezing	g/ice formi	ng ;		[1]

Mark Scheme


Syllabus

Paper

Page 3

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0653	23

(f)

ray from air to glass bent towards normal; both angles marked correctly; exit ray into vacuum roughly parallel to incident ray;

5 (a)

ion	reagent	result
copper(II)	NaOH/NH₃(aq) ;	(light) blue ppt/solid ALLOW dark_blue solution if NH ₃ used;
chloride	AgNO₃ ;	white ppt/solid;

[4]

[3]

(b) (i) cathode; anode; electrolyte;

3 correct (2)

1 or 2 correct (1)

[2]

(ii) copper;
 brown/pink;

[2]

(iii) (chlorine) (pale) green;

(litmus) white/bleached;

[2]

Page 5			Syllabus	Paper
		Cambridge IGCSE – October/November 2016	0653	23
6	(a) (i)	F stigma/carpel; G sepal;		[2]
	(ii)	any anther correctly labelled ; contains the male gamete/pollen		[2]
	(iii)	any one from: large/brightly-coloured petals; scented; presence of nectar;		[1]
	(b) (i)	any two from: increased rate of transpiration (at 27 °C); (due to) increased rate of evaporation/more water loss from plant; molecules have more kinetic energy;		[2]
	(ii)	any value less than 1.1 cm because the rate of evaporation/transpiral lower in humid conditions;	ation is	[1]
	(c) (i)	root 1 and it has root hairs cells (for absorption of water) ;		[1]
	(ii)	line drawn across the root through the cortex to the stele; line finishes in the xylem;		[2]
7	(a) (i)	50 (cm);		[1]
	(ii)	correct arrow;		[1]
	(b)			

(c) (i) resistance;

[1]

[3]

(ii) (3/2 =) 1.5; ohm(s)/ Ω ;

variable resistor symbol;

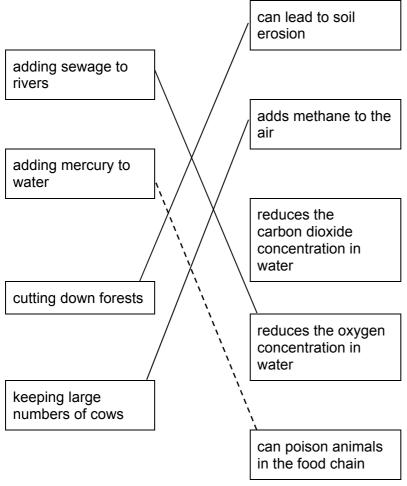
all connected in series to form a complete circuit;

ammeter symbol;

[2]

Page 6	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0653	23

8 (a) process B filter(ing)/filtration;
 process C evaporation/crystallisation;


(b) increase concentration (of acid); increase temperature; [2]

(c) (i) sodium sulfate / Na₂SO₄; carbon dioxide / CO₂; [2]

(ii) (pH number) increases/goes to 7; [1]

(iii) three/3; [1]

9 (a)

[3]

[2]

(b) (i) burning fossil fuels/deforestation;

[1]

(ii) causes the temperature of the atmosphere to rise/global warming/carbon dioxide is a greenhouse gas; consequence, e.g. flooding/melting ice caps/changes in weather patterns; AVP

[2]